
Ants Meeting Algorithms

Asaf Shiloni, Alon Levy
The MAVERICK Group

Computer Science Department
Bar-Ilan University, Israel

{asafshiloni,alonlevy1}@gmail.com

Ariel Felner, Meir Kalech
Department of Information System Engineering

Deutsche Telekom Labs
Ben-Gurion University, Israel
{felner,kalech}@bgu.ac.il

ABSTRACT
Ant robots have very low computational power and limited memory. They
communicate by leaving pheromones in the environment. In order to create
a cooperative intelligent behavior, ants may need to get together; however,
they may not know the locations of other ants. Hence, we focus on an ant
variant of the rendezvous problem, in which two ants are to be brought to
the same location in finite time. We introduce two algorithms that solve
this problem for two ants by simulating a bidirectional search in different
environment settings. An algorithm for an environment with no obstacles
and a general algorithm that handles all types of obstacles. We provide
detailed discussion on the different attributes, size of pheromone required,
and the performance of these algorithms.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Intelligent agents

General Terms
Algorithms, Theory

Keywords
Distributed problem solving, Mobile agents, Formal models

1. INTRODUCTION AND BACKGROUND
The field of ant robotics is a well-known active field of research

in computer science and robotics. Ant robots or ants are light robots
whose capabilities are restricted. They have a limited constant
memory and limited sensing capabilities [7]. Their computational
power is very weak as they can only store and remember their lo-
cal environment and cannot use global variables. In fact, they are
proven to be logically equivalent to finite state machines [14, 16].

Therefore, they cannot execute conventional planning methods.
Moreover, unlike regular robots, ants cannot directly communicate
by sending messages or signalizing each other. To communicate (as
inspired by real insects in nature), ants physically leave pheromone
tracks in the environment and these can be read by other ants. Thus,
pheromones are acting as shared memory.

Many canonical problems in robotics such as terrain coverage [7]
and foraging [10] were shown to be successfully solved with ants.

Cite as: Ants Meeting Algorithms, Asaf Shiloni, Alon Levy, Ariel Fel-
ner and Meir Kalech, Proc. of 9th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2010), van der Hoek, Kaminka,
Lespérance, Luck and Sen (eds.), May, 10–14, 2010, Toronto, Canada, pp.
�
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Furthermore, ants were shown to be practical in real-world applica-
tions. For example, the advantage of ants over convectional robots
in practice is found in the micron-scale environments such as the
blood stream and other parts of the human body. The robots acting
in these environments cannot be equipped with abundant memory
or high-end sensors, nor with high computational performance ca-
pabilities. Thus, only robots with light hardware capabilities must
be used [5, 6].

Algorithms for ant robots often require cooperation between mul-
tiple ants. These algorithms usually assume that the ants start ex-
ecuting the algorithm while located at the same location, or in a
close proximity, and would not work otherwise. For example, in
the row straightening technique [15] the assumption is that the ants
are close enough to each other in order to align themselves using
local interactions. Similarly, in self-assembly problems [1] the as-
sumption is that the ants are close enough to cooperate and even
physically attach themselves to each other in order to create a tree
of ants. If these assumptions are not valid and the ants are scattered
in the environment, they first need to meet in order to execute these
algorithms. For example, assume some ant robots are injected into
the blood stream in order to perform a task such as destroying a
cancerous cell. As soon as they are inside the blood stream, they
are scattered around and need to meet in order to cooperate on that
task.

Furthermore, ant algorithms with multiple ants usually terminate
when the mission is accomplished. In many cases, after termination
the ants are scattered around the environment. For example, in the
cleaning protocol [16] the algorithm halts when the entire environ-
ment is clean but each ant ends up in a different location. Similarly,
this happens in the coverage algorithm [12]: the ants end up in dif-
ferent locations. Also, in many cases, the ants should be gathered
for future tasks. For example, assume the ant robots have just fin-
ished their first mission destroying a cancerous cell, they need to
get together in order to be removed more easily from the blood or
in order to proceed to the next cancerous cell.

Therefore, In this paper we address the ant rendezvous problem
which is the problem of bringing two ants from arbitrary positions
to a common position in finite time1.

A naive protocol for solving the ant rendezvous problem will
instruct one ant to cover the whole area (using any of the exist-
ing coverage algorithms [4, 12, 16]) and the other ant to wait, thus
alleviating the need for coordinating the meeting. However, this
algorithm has three drawbacks. First, it requires the ants to decide
in advance, which ant searches and which stays. Unfortunately, the
ants do not have any direct communication nor do they know the
other ant’s unique id in advance. Second, in this protocol only one

1Generalizing this to more than two ants is not always trivial and is
left for future work

567

567-574

ant makes the search. If this ants fails the entire process will fail
because the search is not distributed among the ants. Third, in this
protocol one of the ants does all the work while the other remains
idle. Clearly, if the search is distributed, time can be reduced too.

The ant rendezvous problem was first introduced briefly in [14]
where ants were theoretically compared to more powerful robots.
A spiraling based bidirectional search algorithm that works in an
obstacle-free grid environment was presented. However, the lim-
itation of that algorithm is that it is based on the following strict
set of assumptions which may not handle many real world situa-
tions. First, it requires both ants to start the algorithm at the same
time - a requirement that can seldom be met in reality. Second, it
assumes the ants share the same directionality. That is, they both
agree where "north" is. Unfortunately, this assumption requires an
additional sensor, which might increase the ant size. Lastly, the
most severe assumption is that algorithm can only work in an ob-
stacle free grid. In environments with obstacles the algorithm fails.

In this paper we address the rendezvous problem of two ants, but
relief the sterile set of assumptions made in [14]. We present two
algorithms for two environment settings:

• An attempt at an algorithm for an environment with rectan-
gular obstacles of finite size, the Rectangular-Obstacles Al-
gorithm (ROA).

• A general algorithm that handles all types of obstacles, the
General-Obstacles Algorithm (GOA).

In these algorithms, ants communicate by leaving pheromone tracks
in the environment. To solve the ant rendezvous problem, each ant
runs the same algorithm separately and tries to find the other ant by
the pheromone tracks it leaves. The main idea of these algorithms
is to simulate a breadth-first search from their initial position. Thus,
the algorithms guarantee convergence and thus, the meeting of the
ants.

In the first algorithm (ROA), the ants move in spiral, while by-
passing rectangular obstacles of finite size. As we later show, this
attempt fails, and this algorithm is left as an alternative to the algo-
rithm in [14] for an environment with no obstacles. In the second
algorithm (GOA), the ants move in an iterative deepening manner.
This guarantees that the area surrounding them will be covered un-
til they finally meet. The rendezvous problem was first described
in [13] and has countless variations.This paper focuses on two ho-
mogeneous ants, both run the same protocol to ensure meeting in a
finite time within infinite grids.

Previous work in ant robotics (e.g., [8,12]) address two problems
close to the rendezvous problem (1) area coverage problem where
the entire area should be visited by the ants and (2) the "search"
problem where a certain unknown location (e.g., a location that
contains a treasure) should be found. They allow a non-evaporative,
unbounded integer pheromone in any one unit of space and focus on
the continuous domain coverage problem. By contrast, our problem
does not assume a stationary target and we bound the size of the
pheromone.

Spiral searches were also used to allow a robot finding a target
object in an unknown environment with obstacles [2]. But, com-
mon robots with large memory were assumed and the algorithm
presented is not applicable given the memory constraints of ants.
Moreover, a stationary target was assumed while in the variant of
the rendezvous problem presented in this paper any location can
serve as a meeting place. The gathering problem is another similar
multi-agent problem, in which multiple agents gather into a point
or a small region, within finite or expected time [11]. However,
all works on the gathering problem assume the agents are stationed
initially in close proximity.

In section 2, we provide definitions of the ant, its environments,
and the rendezvous problem. In section 3, we go over the concept
of the spiral meeting algorithm from [14], which is the basis for our
algorithms. Then, in section 4, we present the Rectangular Obsta-
cles Algorithm, which fails to solve the rendezvous problem for an
environment with finite rectangular obstacles and can only solve it
for an environment with no obstacles. In section 5, we present the
General Obstacles Algorithm, which solves the rendezvous prob-
lem for any environment. Finally, in section 6 we propose general-
izations to our algorithms for stricter settings.

2. DEFINITIONS
For the work in this paper we make the following definitions,

which are compatible to those in [14].

DEFINITION 1. World
The world is an infinite two dimensional grid. Each cell can be
either blocked (with an obstacle) or free. Pheromones may only
be placed in free cells. In this paper, we handle three types of
grids: (1) ClearGrid - An infinite grid with no obstacles. (2)
RectangleGrid - An infinite grid with a bounded sized rectangular
obstacles. (3) ObstacleGrid - An infinite grid with an unbounded-
sized any-shape obstacles.

Grid decomposition of the environment is a well known approx-
imation for problems solving of this kind [3, 16]. The cell unit
should be at least as large as the smallest rectangle that can sur-
round the ant.

DEFINITION 2. Ant
An ant is a robot that has the following attributes and abilities:

Attributes:
Homogeneity: Ants are homogenous; they all have the same capa-
bilities, and run the same algorithm.

Localization: The ants share the same grid alinement but cannot
recognize their location (in Section 6 we show how to eliminate the
shared grid alignment requirement)

Communication: No direct communication is allowed between ants
and they communicate with pheromones (Definition 3).

Computational power: The computational power of ants is limited
to the local environment and they cannot manipulate variables and
cannot use recursions. In fact, such ants are proved to be equivalent
to a finite state machines [14].

Actions:
Move: in four directions, north, south, east, west.

Sense: Ants can sense the content of cells which are distanced up
to a given radius. The outcome of a sense reveals the content of
that cell which is either blocked, free, contains a pheromone, or
contains another ant. In this paper, we assume that the sense radius
of the ant is one unit. That is, it can sense the content of its current
cell and any of its eight neighboring cells.2

Write: (or change) pheromones in its current cell. There is no limit
on the number of cells that an ant can write a pheromone in (if it is
located there), i.e., they have unlimited "ink".

Identification:
id: Ants have unique ids. Ants may leave their id as a field in
pheromone. We assume that the different id is an ordered set (e.g.

2In section 6.1 we show how to modify our algorithms to a sense
radius of zero, where an ant must physically move to a cell in order
to learn about its content.

568

Figure 1: NOA: step by step ant’s traveling. Gray cells are
pheromones. The framed cell is the ant’s starting location.

integers). Therefore, an ant can compare its own id to the id in a
cell. throughout this paper we denote the ant with the lower id by
al and the ant with the higher id as ah.

Ants communication is done using pheromones as defined below:

DEFINITION 3. Pheromone
A pheromone is a symbol that can be read/writen by ants in cells.
Each cell can contain at most one pheromone. When a pheromone
is encoded, it is divided into a finite number of fields. Each field
can have a finite set of different values. Therefore a pheromone has
a finite set of symbols. Pheromones do not evaporate by themselves
but can be erased and rewritten by ants.

Lastly, the ant rendezvous problem is defined as follows:

DEFINITION 4. Ant Rendezvous Problem
Let a1 and a2 be two ant robots, which are initially positioned in
locations p1 and p2 respectively. Then, we say that an algorithm A
running on both ants succeeds iff a1 and a2 meet (i.e., positioned
in adjacent locations) within finite time.

3. NO OBSTACLES ALGORITHM
A first attempt to solve the ant rendezvous problem was men-

tioned in [14] and it solves this problem in ClearGrid. We call
this algorithm the No Obstacle Algorithm (NOA). For complete-
ness and because it serves a basis for our new algorithm we first
describe that algorithm. Then, we introduce two new algorithms,
the Rectangle Obstacle algorithm (ROA) and the General Obsta-
cle Algorithm (GOA) which solves the ant rendezvous problem in
RectangleGrid and ObstacleGrid correspondingly.

NOA makes the following assumptions (which are different from
the assumptions above):

• The world is a grid with no obstacles.

• NOA assumes a Shared Clock, meaning that the ants execute
the algorithm concurrently (using the same time steps) and
that they start at the same time.

• NOA assumes that both ants start moving to the same direc-
tion. That is, they both agree where "north" is and they both
start moving to the same direction, e.g., north.

• Both ants in NOA use the same unary pheromone (one-field
only). No id is used and the content of the pheromone cannot
reveal the identify of the ant that placed it.

In NOA, each ant spirals around its starting location by leaving
a pheromone in each new cell it visits. Figure 1 demonstrates a
step by step traveling. The bold {3 × 3} square box indicates the
current position (center of box) and its 8 neighbors which are the
sensory radius of the ant. The grey cells represent pheromones left
by the ants. The bold cell represents the start location of the ant.
For example, when moving from frame 1 to frame 2, the ant placed

a pheromone in its own cell and moved one cell north. Then it
placed a pheromone in that cell and moved east (frame 3) etc.

The ant follows the FSM presented in Figure 2 at all times. Each
state of the FSM represents the previous action of the ant. Each
edge corresponds to different possible sensing scenarios. The num-
bers above some of the scenarios that match to the frames of Figure
1 are labeled with the corresponding frame numbers above them. In
each state of the FSM the ant activates its sensory radius (a {3×3}
box) and moves according to the edge that corresponds to the con-
tent of that box. The ant starts in Start and moves north to state
North. The ant will halt in any case that another ant is in its sen-
sory radius (this is not shown in the FSM of figure 2). Each {3×3}
box in the figure is interpreted as follows. The current position of
the ant is in the middle square. Grey cells represent pheromones,
and white cells are free. X cells denote a don’t care cell. For exam-
ple, scenario 5 corresponds to the case that the ant just moved South
and that the two cells, north and north west contain pheromones.

����� ��	�

����

���

��	�

����

Figure 2: NOA finite state machine representation.

The FSM can implicitly determine from the sensory radius, based
on a case by case analysis, whether a pheromone was placed by it-
self (its own spiral) or by the other ant (it has just encountered the
spiral of the other ant). In this case it will either stop (move to the
Halt state) and wait for the other ant to reach it or it will continue
spiraling until it finds the other ant while assuming that the other
ant stopped. The decision is made again according to the exact
content of sensory radius. The FSM covers all possible cases (of
a ClearGrid) and can be proved to be complete and correct. The
main idea is that since NOA works in a ClearGrid we know ex-
actly where each ant is located with respect to its start position and
a unary pheromone is sufficient.

As explained above, NOA [14] is a first step for solving the ant
rendezvous problem. Its main advantage is that it can use a unary
pheromone but its limitations are that it makes a number of strict
assumptions which may prevent its applicability in many scenar-
ios. It requires both ants to start the algorithm at the same time,
it assumes the ants agree where "north" is and most importantly,
it assumes the grid has no obstacles. We now turn to present ant
meeting algorithms for environments with obstacles, which relief
the above assumptions but use pheromones with more information.

4. RECTANGULAR OBSTACLE ALGORITHM
Extending NOA to work in an obstacle prone environment is not

trivial. Recall that upon encountering the other ant’s pheromones
the FSM in NOA directs the ant whether to stop or continue spi-
raling. It can do so only because it knows the exact position of the
other ant, since they start at the same time and facing the same di-
rection. However, any obstacle can break that symmetry. In NOA,

569

the agreement on a common north have enabled the two robots to
react differently to the same situation and thus, ensure meeting.
However, in an obstacle prone environment we will need to use a
stronger mechanism. Therefore, let us remove the assumptions of
a coordinated start and instead use the ants unique ids. The ants
may leave their id as a field in pheromone. We assume that the
different id is an ordered set (e.g. integers). Therefore, an ant can
compare its own id to the id in a cell. throughout this paper we
denote the ant with the lower id as al and the ant with the higher
id as ah. Thus, if two ants are drawn out of k ants in order to
meet in the environment, then each pheromone produced by an ant
will poses a log k field for its unique id. However, even with the
addition of the unique ids, constructing an algorithm for obstacle
prone environments is problematic. To illustrate this, let us start
with a less complex environment and introduce the Rectangular
Obstacles Algorithm (ROA), which should solve the rendezvous
problem in environments with rectangular obstacles of finite size
(RectangleGrid). As in NOA, in ROA each ant creates a spiral
around its starting location by leaving a pheromone in each new
cell it visits. In fact, until the first obstacle is sensed, ROA behaves
identically to NOA and the 12 steps shown in Figure 1 demonstrate
the behavior of ROA too in such cases (although the pheromones
will be different as will be detailed below). The main idea behind
ROA is that when an obstacle is encountered the ants should encir-
cle the obstacles and continue spiraling.

Each pheromone in ROA includes the following fields:
id: This will enable an ant to determine who placed the sensed

pheromone3 The number of bits for this field is log k where k is the
number of ants in the system from which two ants are drawn. This
field does not change.

parent: This field of the pheromone will point to the direction
of the cell which the ant (who placed the pheromone) arrived from.
There are four possible directions plus a fifth symbol for the starting
location (Null direction). Thus, 3 bits are sufficient for this field.
This field does not change.

In general, the ants start spiraling and at each cell they place a
pheromone with their id and with their parent field. In ROA, once
an ant senses an obstacle, the ant will encircle the obstacle tightly,
clockwise, such that the obstacle is always on the right side of the
ant. Again, similar pheromones with both fields are placed in each
cell. This process continues until an ant senses a pheromone of the
other ant (by reading the id field). In this case, the protocol should
make sure that the ants meet. ROA ensures this by using the follow-
ing rule based on the id field. When an ant senses the pheromone of
the other ant it compares the two ids. al (the ant with the lower id)
goes back to its own starting location while backtracking its own
parent field. ah will follow the parent tracks of al towards its
starting location. Thus, they will finally meet at (or near) the star-
ing location of al. The reader is encouraged to watch the video at
http://vimeo.com/6930898 which demonstrates how ROA works.
Although the ants move synchronously in the video, it is not a re-
quirement for the algorithm to work.

Note that we assume a shared grid for this protocol. We show
how to overcome alignment issues and therefore work without this
assumption in Section 6.2.

Algorithm 1 presents the moving strategy of ROA for each ant
for a given step. There are three possible states in the algorithm.
(1) ANT_NOT_SENSED: the ant did not sense a pheromone of the
other ant yet and should continue spiraling.
(2) ANT_SENSED: The ant sensed the pheromone of the other ant
and should follow the parent field of itself or of the other ant.
3Unlike a ClearGrid where NOA can determine this based on a
case by case analysis, here, obstacles do not allow this.

Algorithm 1 ROA (Ant_ID id)
1: if ∃ ant in radius1 then
2: state ← ANT_FOUND
3: else if state = ANT_SENSED then
4: move(current.parent)
5: else if ∃pheromone in radius1 ∧ pheromone.id
= id then
6: state ← ANT_SENSED
7: if id > pheromone.id then
8: move(pheromone)
9: else if state = ANT_NOT_SENSED then

10: nbr = sense(orientation)
11: if nbr.parent = orientation + 180 ◦ then
12: move(current.parent)
13: orientation ← current.parent − 90 ◦

14: else if nbr = NULL then
15: move(orientation)
16: current.parent ← orientation + 180 ◦

17: orientation ← orientation + 90 ◦

18: else {change direction counterclockwise}
19: orientation ← orientation − 90 ◦

(3) ANT_FOUND: the ant sensed the other ant.
The ant keeps track of its current orientation (i.e, north, east,

south, or west) and changes it accordingly (e.g., if the orientation is
"north" and the ant turns left then the orientation is now "west"). In
ROA, the ant’s initial orientation is chosen to be arbitrarily "east".
Note again, that the ants do not agree about the directions and each
of them has its own "north". The ant’s current cell in each iteration
is labeled as current while a pheromone field in that cell is labeled
as current.field.

The ant starts at an “ANT_NOT_SENSED” state and keeps run-
ning the algorithm until it reaches the “ANT_FOUND” state. First
the ant senses the 8-neighbor radius. If the other ant was sensed the
algorithm halts (line 1). If a pheromone of the other ant was sensed
(line 5) then the state changes into “ANT_SENSED”. The ant com-
pares the ids and if its own id is larger it moves to that cell (Line
8) and it is now in a cell that was visited by the other ant. From
that point on the ant just follows the parent field of its current cell
(line 3) until it reaches the starting location.

Lines (9–19) show the actions that are taken if the
“ANT_NOT_SENSED” state is still valid and the ant needs to con-
tinue its spiral. A neighbor nbr is determined based on the orienta-
tion variable. There are three possible scenarios now and for each
of them a different action is taken to guarantee that the spiral will
continue. (1) lines (14–17): If nbr is free the ant moves to neighbor
and the orientation rotates clockwise in 90 ◦. (2) line (19): If nbr is
blocked by an obstacle or contains a pheromone with a parent field
that does not point to the current cell, the orientation rotates counter
clockwise in order to encircle the obstacle or the pheromone in the
next step. (3) lines (11–13): the parent field of nbr is pointing to
the current cell. In this case, the ant reached a dead end and should
backtrack.

Figure 3 shows different scenarios of ROA. The arrows in the
figure are the parent field of the pheromones and point to the pre-
vious location of the ant. The ant symbol shows the positions of
the ant. Black boxes are obstacles. The framed cells are the start-
ing locations of the ants. In Figure 3(a) The starting location of ant
a1 is (7,9), and that of ant a2 is (9,4).

a1 starts spiraling and when it reaches (9,8) it senses the obstacle
of (9,7). It encircles the obstacle from left, and then after 3 steps
it senses a pheromone of a2 while locating at (10,6). Since a1

has a lower id it follows its own parent field towards its starting
location. a2 performs its spiral. When it reaches (9,6) (after 22
steps) it senses a1’s pheromone at (10,6). Since a2 has a higher id

570

Figure 3: ROA examples: Successful (a) and unsuccessful (b,c).
it follows a1’s pheromones. Finally, they meet in (6,8) and (6,9).

4.1 Limitations of ROA
Unfortunately, ROA does not solve the rendezvous problem with

obstacles as advertised. In order to assure a meeting, an algorithm
must ensure a full coverage of the environment given enough time.
Otherwise, if some area is not covered and al is in this area, the fol-
lowing scenario can occur: al will encounter the pheromones of ah

and will backtrack to its own starting location. ah will continue spi-
raling while never returning to this area. Figure 3(d) shows such a
pathological scenario. a2 starts at (3,17) and starts spiraling around
the three obstacles (west, north, south). a1 starts at (12,10), spirals
around itself, and once encountering a2’s pheromones it heads back
to its own starting location. By that time, a2 is outside the obstacle
area and will keep spiraling eternally.

Also, even if ROA worked in a finite rectangular obstacle envi-
ronment, it could not handle either concave or infinite obstacles.
For example, Figure 3(b) presents the behavior of ROA in an en-
vironment with concave obstacle. a1’s starting location is inside
the concave obstacle. Once it finds a2’s pheromone at cell (8,4)
it backtracks to its starting location, since its id is lower than a2’s
id. At the same time a2 circles the obstacle, while not entering the
"cave", since it has already blocked the entrance of the cave with its
own pheromones. Thus, it continues to spiral endlessly. Another
example of ROA’s failure is in Figure 3(c) where a2 tries to encir-
cles the infinite wall and will never return, avoiding any possible
meeting, while a1 senses a2’s pheromone at (11,6) and returns to
its own starting location, waiting forever.

Therefore, we conclude that ROA is ultimately just an alternative
meeting algorithm for an area with no obstacles (ClearGrid). As
opposed to NOA, it uses the ants unique ids and does not require
them to start at the same time.

4.2 Theoretical Analysis of ROA
ROA guarantees a meeting in ClearGrid:

THEOREM 1. Let a1 and a2 be two ants running ROA in a

ClearGrid. Then, a1 and a2 meet within finite time.

PROOF. Task completion: Since there are no obstacles, each
spiral covers the environment systematically until both ants even-
tually encounter each other’s pheromones. At that point, both ant’s
know each other’s ids and travel to the starting location of the
ant with the lower id using the parent fields of the pheromones.
Therefore, both ants meet at that location (or on the way) within
finite time, since the initial distance between them is finite.

Time complexity: Let d be the initial manhattan distance
between a1 and a2. Assume a1 completed the search before
a2 started to act.ROA performs the same spiral path as NOA
(O(4d2 = d2)) with the addition of a trip to the center of one of
the spirals. This last movement is in the worst case from the corner
of the spiral to its center and therefore costs d steps. Altogether,
ROA’s time complexity is O(4d2 + d) = O(d2).

Memory complexity: ROA is suitable for ants with very limited
memory as only two variables are needed (orientation and state),
each with a small constant number of possible values. Thus, con-
stant amount of memory is needed.

Size of Pheromone: The algorithm uses log k + 3 bits of
pheromones: three bits for marking the parent field of the
pheromones (four directions and one starting location), and log k

bits for the id, assuming that the two ants are drawn from a popu-
lation of up to k ants.

Total number of pheromones used: The total number of
pheromones used is asymptotically equal to the time complexity
of the spiral itself, which is O(d2).

5. GENERAL OBSTACLES ALGORITHM
In this section we present the General Obstacles Algorithm

(GOA), which solves the rendezvous problem for ants in an en-
vironment which contains unbounded-sized any-shape obstacles
(ObstacleGrid).

The main idea behind GOA is that it guarantees the coverage of
the entire environment in a breadth-first manner by visiting the cells
in radius r only after visiting all cells in radius r − 1. Therefore,
it can handle concave or infinite obstacles, since it does not try
to encircle them. Since the ant’s memory is very limited an ant
cannot implement ordinary breadth-first search (BFS) because (1)
the memory grows quadratically with the depth of the search (in
a grid) (2) the ant physically visits the cells and cannot instantly
jump from a node to its successor in the open-list. To overcome
this we use a Depth-first Iterative Deepening (DFID) search which
simulates BFS without the memory limitation [9]. DFID searches
a graph by performing a series of depth-first searches up to a given
depth d. In each DFS call we increment d by one.
In GOA we use pheromones which include the following fields:

id:. Identical to the id field in ROA. This field does not change.
parent:. Identical to the parent field in ROA. The parent field

actually spans the DFS tree and this field does not change.
direction:. In DFID, a variable d must be maintained in order

to decide when to backtrack. The number of bits for this variable
depends on the maximal value of d and is not constant. The ant can
either store it in its internal memory, or alternatively, place it as a
pheromone in a cell. However, with a constant amount of memory
or with limited size of pheromone the depth of the search will be
bounded. To overcome this we use another field in the pheromone
(the direction field) with only 4 different values (2 bits only), one
for each possible direction. The direction field changes at every
visit to a cell. While the parent field at cell c points to the cell that
the ant came from to c, the direction field points to the cell that
the ant moved to after leaving c. As detailed below, based on this

571

Figure 4: GOA demonstration on a ClearGrid. the framed cell
is the ant’s starting location.

field the ant determines where to go next and whether to continue
the deepening or to backtrack.

Algorithm 2 GOA (Ant_ID id)
1: if ∃ ant in radius1 then
2: state ← ANT_FOUND
3: else if state = ANT_SENSED then
4: move(current.parent)
5: else if ∃pheromone in radius1 ∧ pheromone.id
= id then
6: state ← ANT_SENSED
7: if id > pheromone.id then
8: move(pheromone)
9: else if state = ANT_NOT_SENSED then

10: par ← current.parent, direct ← current.direction
11: direct ← direct + 90 ◦

12: nbr = sense(current.direction)
13: if celldirect = NULL then
14: move(direct)
15: par, direct ← direct + 180 ◦

16: move(par)
17: else if nbr.parent = direct + 180 ◦ then
18: move(direct)

GOA (Algorithm 2) presents the moving strategy of each ant.
The initial state of the ant is “ANT_NOT_SENSED”. GOA is iden-
tical to ROA in the steps that are taken if the other ant or the
pheromone of the other ant is sensed. The main change in GOA
is that the ant moves in a DFID manner instead of a spiral (as in
ROA). In particular, assume the ant is located in cell c. The next
cell to visit is determined according to the direction field in c as
follows. The ant reads that field, which points to the last direc-
tion the ant have taken from c in its last visit, rotates it by 90 ◦

clockwise and moves accordingly (Line 11). The meaning is that
if the direction field points north, then the subtree of the DFS tree
rooted at the north neighbor was searched already and we should
now visit the subtree in the east. If all three subtrees were searched
the direction field will be now changed to be equal to the parent

field and the search will backtrack up in the tree. The initializa-
tion of the direction field at the starting location is chosen to be
arbitrarily "north".

Similarly, if an empty cell is reached (Line 13) the ant will ini-
tialize the direction field to point to the parent and the search will
backtrack. This ensures that only one new depth is reached in ev-
ery iteration. There are two cases that we do not open a new branch
from a cell c. If the direction field points to a cell with (1) an

Figure 5: GOA examples.
obstacle (2) a parent field which does not point to c. In this case
we are seeing the same node in another branch of the DFS tree and
there is no point to enter this node again in the same iteration. This
is referred to as duplicate pruning in the literature. The reader is
encouraged to watch the video at http://vimeo.com/6962290 which
demonstrates how ROA works.

In Figure 4 we show how GOA proceeds from the starting loca-
tion (0) to systematically cover the area around the ant. In Figure
4(1) the ant moves east, returns back west in (2), then moves south
and returns north (3–4), west and returns (5–6), north and returns
(7–8). The first iteration to depth 1 is completed. Now an iteration
to depth 2 starts. The ant moves east again in (9). At this time it
moves east another time (10) and again back at (11) etc. It will
then continue to all possible locations in depth 2. A result of run-
ning more steps can be seen in Figure 5 (a): there are no obstacles,
the arrows show the parent fields in the pheromones for each cell.

To illustrate more how GOA proceeds, Figure 5(b) shows a suc-
cessful meeting when one ant starts in a cave. A more complex
example is presented in Figure 5(c). a1 and a2 start at (5,5) and
(10,8) respectively. Then, they start exploring all nodes of distance
1 from their starting locations, in a clockwise order while skipping
any direction leading to an obstacle (e.g., (9,8) for a2 and (5,6) for
a1). They continue this process for larger radiuses until they sense
each other’s pheromones at (9,3) and (10,3). Then a1 returns to
its staring location, and a2 follows the same path to a1’s starting
location as well.

5.1 Theoretical analysis of GOA
GOA can be seen as a memoryless simulation of Breadth-First

Search where the open list is physically distributed in the environ-
ment in the form of pheromones. We now prove that GOA guaran-
tees a meeting:

THEOREM 2. Let a1 and a2 be two ants running GOA in an
ObstacleGrid. Then, a1 and a2 meet within finite time.

PROOF. Task completion: DFID simulates BFS and thus, each
cell at distance d will be finally reached at iteration d. The same
reasoning that was presented for ROA is valid here too. The ants
will either meet or will sense each other stationary pheromones at
some point of time and will therefore backtrack using the parent

field and meet in the same way as in ROA.

572

Time complexity: Let d be the length of shortest path between
a1 and a2. Assume a1 completed the search before a2 started to
act. If obstacles exists, this only reduces the number of visited cells
since it is pruning the branches of the tree. Thus, assume that there
are no obstacles in the grid. In this case, a1 runs the algorithm for
every depth up to depth d. The constructed tree can be seen as 4
subtrees rooted at the origin, one for each direction. Each depth in
each subtree has one more node and thus, the ant iterates 1 node,
then 1 + 2 = 3 nodes, then 1 + 2 + 3 = 6 nodes, and according
to the DFID time complexity [9], GOA’s time complexity in the
worst case is 4[2d(d + 1)(d + 2)/6] = O(d3).

Memory complexity: Similar to ROA, GOA is suitable for ants
with very limited memory as only one state variables with a small
constant number of possible values is needed. Thus, its memory
needs is constant at all times.

Size of Pheromone: The algorithm uses log k + 5 bit
pheromones. Three bits for marking the parent field of the
pheromones (four directions and one starting location), two bits for
the direction field and log k bits for the id, assuming that the two
ants are drawn from a population of up to k ants.

Total number of pheromones used: Similarly to the time com-
plexity, assume there are no obstacles in the world and only a1

searches. Thus, by the time the ants meet at depth d, a1 had pro-
duced a square of pheromones with a radius of d. thus, the total
amount of pheromones placed by a1 is 1 + 4

∑
i = 1 + 4d(d +

1)/2 = O(d2)

6. EXTENDING MEETING ALGORITHMS
All three algorithms (NOA, GOA, and ROA) assume that the

sensing radius is 1 and that the ants share the grid alignments. To
extend the applicability and to further restrict the capabilities of the
ants, we now generalize the algorithm to handle a sensing radius
of 0 (Section 6.1) and to the case where the grids are not aligned
(Section 6.2).

6.1 Sensory Radius
So far we have assumed a sensory radius of one cell. However,

in reality the simplest robots might not by able to sense in each
direction, but can only sense the content of the current cell. There-
fore, we show a simple routine that simulates a sensory radius of
one by using a sensory radius of zero. To do this we add 8 internal
memory registers each is capable of storing one pheromone.

In the algorithm with a sensing radius of 1, we performed a sens-
ing action to all 8 neighbors. To simulate this with a sensing radius
of 0 we do the following. Each time a picture of the 8 neighboring
cells is needed by the algorithm then the ant will physically move to
these 8 cells and store their content in the corresponding 8 registers.

The idea is to perform the following variant of DFS to all 4 di-
rections. Assume that the ant is in cell c. The ant will move 1 step
north (to the adjacent cell). It will then move to the east (north east
corner) and backtrack and then to the left (north west corner) and
backtrack. It will then move back to c. Each corner will be vis-
ited twice but this is needed in case there is an obstacle in one of
the cells adjacent to c. For example, cell 2 in figure 6 can only be
visited via cell 1 but not via cell 3. Cell 4 may not be sensed this
way. But, even assuming a sensing radius of 1 the exact status of
that cell is of no importance and can be treated as a "don’t care" as
it cannot affect the decision of the ant. Eventually, after at most 24
steps the ant will be back at c with a complete vision of the 8 cells
around it.

Figure 6(a) shows the status of each cell while Figure 6(b)
shows how this picture is encoded into the 8 registers. Circles are
pheromones and boxes are obstacles. Cell 4 is blocked and cannot

 ?

Cell AntID parent direction

1 000000 110 00

2 100011 011 11

3 000000 111 00

4 000000 111 00

5 000000 111 00

6 010110 011 11

7 010110 010 00

8 010110 001 01

4 3

1 0

ID22PSDN ID22PwDw ID22PeDe

ID35PwDw

6 7

2

8

5

(a) (b)

Figure 6: Simulation of a 1-radius sensing with no sensing.

P1ID1

P3ID1

P1ID1 P4ID1

P1ID1

P3ID1

P1ID1 P4ID

P2ID2

P1ID2

P3ID2

P2ID2

P4ID2

P4ID2

P1ID2

P2ID2

P1ID2

P
1 ID

2
P

2 ID
2

P
2 ID

2

P
2 ID

2
P

4 ID
2

P
1 ID

2

P
1 ID

2
P

4 ID
2

P
3 ID

2

(a) (b)

Figure 7: Two non aligned examples.

be sensed. Thus, it is marked as an obstacle in the corresponding
register.

Also, we note that the unit cell of the grid represented by the
ant should be the smallest unit, in which the ant can fit and con-
sequently, the sensory radius should be chosen to be the length of
the maximum number of cells, such that the ant sensors are still
reliable. Thus, the ant can minimize odometry mistakes by always
aligning to the grid of pheromones it creates, i.e., according to the
local environment.

6.2 Alignment
So far we assumed a shared grid for both ants. However, when

two ants start running any of the algorithms above, the grids that
each of them uses to represent the world may be non aligned in an-
gle as shown in Figure 7(a). This is because the ants do not have
a global sense of direction and therefore, each can call the angle
it starts at as "north". Furthermore, even when the two grids look
aligned (as in Figure 7(b)), their directionality could be orthogonal.
In this case, assume ant a1 encounters a2’s pheromone and recog-
nizes the parent field of "north". But, that north is relative to a2’s
starting angle and therefore, a1 cannot interpret the direction p is
pointing at.

To solve this problem, we propose extensions to ROA and to
GOA. Since solving this with GOA is simpler we present it first.

6.2.1 GOA Alignment

In fact, in order to meet (using GOA) with non aligned grids
the ants do not need to align themselves to each other’s grid. In
addition, the resulting algorithm, GOA_align, produces a differ-
ent behavior than in the original GOA. Here, instead of meeting
in the starting location of al (the ant with the lower id), the ants
meet at cell c where ah (the ant with the higher id) first senses al’s
pheromone. When ah first senses the pheromone of al it moves
to the location with that pheromone and stays idle. Note that this
location does not necessarily fit one cell within the ant’s grid. al

continues its DFID search until it reaches the location of ah. Fur-
thermore, if it finds a pheromone of ah, it can treat it as an obstacle
because we know that the other ant is in the frontier of its DFID.
Both algorithms, GOA and GOA_align, share the same asymp-

573

totic time complexity. However, GOA_align is slower than GOA
because the entire DFS tree needs to be spanned up to the depth of
the other ant. By contrast in GOA they both follow a simple track
to the start location. Algorithm 3 presents the lines for GOA_align
which should replace lines (3–8) in GOA.

Algorithm 3 GOA_align (Ant_ID id, pheromone)
1: if id > pheromone.id then
2: move(pheromone)
3: break
4: else
5: pheromone.parent ← obstacle

6.2.2 ROA Alignment

Recall that ROA solves the rendezvous problem on ClearGrid.
In ROA, once an ant visits a cell it might not return to this cell ever
again. Therefore, unlike GOA, for ROA we do need to realign the
ant’s grid. Algorithm ROA_align is invoked upon discovering the
other ant’s pheromone p at some location and replaces lines (3–8)
in the original ROA. al does not need to align and behaves exactly
like in ROA. However, ah first moves over to p, aligns itself to a
neighboring pheromone p1, and then finds a free neighboring cell
c, which does not contain a pheromone of al and faces towards it
(lines 1–5). Of course, one such pheromone must exist because p

points at one of the four directions (it has a parent). Also, the cell
c must exist since the ant has just encountered the first pheromone
and therefore, it must be on the fringe. Now, the ant can inter-
pret its own orientation from the configuration of the surrounding
pheromones, since they were all placed according to the same al-
gorithm. One of the following two cases occur:
(1) There is no pheromone to the ant’s left (line 6): then the ant
must have reached the current cell from the cell behind the ant and
thus, the ant’s orientation is opposite to the pheromone in the cur-
rent cell.
(2) There is a pheromone to the ant’s left (line 8): then the ant must
have reached the current cell from the cell to its left and so, the
ant’s orientation is off by 90 ◦ counterclockwise.

Once the ant is aligned it can follow the pheromones to the other
ant’s starting location. Notice that this amendment does not change
the time complexity of ROA nor the amount of pheromones needed.

Algorithm 4 ROA_align (Ant_ID id, p)
1: if id > p.id then
2: move(p)
3: face p1 such that d(p, p1) = min (d(p, p′)), ∀p′ ∈ radius1

4: face c ∈ radius1 such that c = NULL ∨∀p ∈ c, pid = id
5: nbr_right ← sense(right), nbr_left ← sense(left)
6: if nbr_left = NULL then
7: orientation ← current.parent + 180 ◦

8: else
9: orientation ← current.parent + 90 ◦

7. CONCLUSIONS AND FUTURE WORK
In this paper we presented two algorithms that solve the ant ren-

dezvous problem for two ants.
ROA, an algorithm for a grid with no obstacles, in which ants

spiral until they meet. This algorithm’s running time is quadratic in
the distance between the two ants and consequently, uses a quadratic
amount of pheromones all are of constant size. GOA, an algorithm
that handles all types of obstacles, in which ants move in iterative
deepening approach. Here, the running time is cubic in the dis-
tance between the two ants, yet it uses only a quadratic amount of
pheromones, all are also of constant size. We now have a set of
algorithms, each is designed to work for a different grid setting.

We plan to extend our algorithms to address the rendezvous prob-
lem for more than two ants. In addition, in this paper we rep-
resented the world by a discrete grid, we would like to extend
it to continuous environments or to other types of maps such as
roadmaps. Moreover, we wish to explore dyadic environments, in
which stigmergy can be a strong factor.

8. ACKNOWLEDGMENTS
This research as supported by the Israeli Science Foundation

(ISF) under grant 305/09 to Ariel Felner.

9. REFERENCES
[1] H. Azzag, N. Monmarché, M. Slimane, C. Guinot, and

G. Venturini. A clustering algorithm based on the ants
self-assembly behavior. In W. Banzhaf, T. Christaller,
P. Dittrich, J. T. Kim, and J. Ziegler, editors, ECAL, volume
2801 of Lecture Notes in Computer Science, pages 564–571.
Springer, 2003.

[2] S. Burlington and G. Dudek. Spiral search as an efficient
mobile robotic search technique. Technical report, Center for
Intelligent Machines, McGill University, January 1999.

[3] Y. Elmaliach, N. Agmon, and G. A. Kaminka. Multi-robot
area patrol under frequency constraints. In ICRA, 2007.

[4] N. Hazon, F. Mieli, and G. A. Kaminka. Towards robust
on-line multi-robot coverage. In ICRA, 2006.

[5] T. Hogg. Coordinating microscopic robots in viscous fluids.
Autonomous Agents and Multi-Agent Systems,
14(3):271–305, 2007.

[6] T. Hogg. Modeling microscopic chemical sensors in
capillaries. CoRR, abs/0811.1520, 2008.

[7] S. Koenig and Y. Liu. Terrain coverage with ant robots: a
simulation study. In Autonomous Agents, pages 600–607.
ACM, 2001.

[8] S. Koenig, B. Szymanski, and Y. Liu. Efficient and
inefficient ant coverage methods. Annals of Mathematics and
Artificial Intelligence, 31(1-4):41–76, 2001.

[9] R. E. Korf. Depth-first iterative-deepening: an optimal
admissible tree search. Artificial Intelligence, 27(1):97–109,
1985.

[10] T. H. Labella, M. Dorigo, and J.-L. Deneubourg. Division of
labor in a group of robots inspired by ants’ foraging
behavior. ACM Transactions on Autonomous Adaptive
Systems, 1(1):4–25, 2006.

[11] M. J. Mataric. Designing emergent behaviors: from local
interactions to collective intelligence. In Proceedings of the
second international conference on From animals to animats
2 : simulation of adaptive behavior, pages 432–441,
Cambridge, MA, USA, 1993. MIT Press.

[12] E. Osherovich, A. M. Bruckstein, and V. Yanovski. Covering
a continuous domain by distributed, limited robots. In ANTS
Workshop, pages 144–155, 2006.

[13] T. C. Schelling. The strategy of conflict. Oxford University
Press, 1960.

[14] A. Shiloni, N. Agmon, and G. A. Kaminka. Of robot ants and
elephants. In AAMAS (1), 2009.

[15] I. Wagner and A. Bruckstein. Row straightening via local
interactions. Technical report, Center for Intelligent Systems,
Technion, Haifa, 1994.

[16] I. A. Wagner, Y. Altshuler, V. Yanovski, and A. M.
Bruckstein. Cooperative cleaners: A study in ant robotics.
International Journal of Robotics Research, 27(1):127–151,
2008.

574

